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7he proaai o medium is, in dfcfct, an integral pans of many military systems. For the most part. interest in tie propagatios
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regiassof tie ionosphere in order to affect radio wave propagation. A variety of mo-dification technique-; are being investigated.
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hgbpower RIFsouirces raise concerns over system limtitations due to self induced anomalous absorption, ray poth deviation and
dlurer. This Symposium will present the current state of ionospheric modificaticon technology, with emphasis on potentialI
applications for enhancing or degrading the pesforsmance of military communications, surveillance and navigation systerms
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THE nM ICS OF GROUND BASED HEATING

by

Professor T B Jones
Department of Physics & Astronomy

University of Leicester
University Road

Leicester LEI 7RH

Introduction

The first Indication that powerful radlowaves could modify the earth's Ionosohere was the discovery of the
Luxembourg Effect in 1933, (Tellegen, 1933). The transfer of the modulation of the high power Luxembourg
broadcasts on to weaker signals propagating through the same region of the ionosphere could only be explained
in terms of Ionospheric 'cross modulation* (Bailey & Martyn, 1934).

The ionospheric electron temperature and hence Its electron density, were changed by the high power wave and
these subsequently influenced other radio signals propagated through the 'modified' region. In the early 1970s, it
was realized that high power radio waves could produce a many Instabilities in the ionosphere in addition to the
collision phenomena asbodated with the Luxembourg effect. These instabilities have a wide range cf spatial and

temporal scales and a number of heating facilities were specially built both in the West and in the Soviet Union,
to study their characteristics. Special issues of a number of journals have been exclusively devoted to heatingresults, eM J.Geophys.Re &970, Radio Science 1974, J.Atmos.Terr.Phyi. 1982 and 1985.

High Power Modification Facilities.

The strongest interaction between a radio wave and the ionospheric plasma occurs when the wave frequetlcy is
approximately equal to the local plasma frequency. Thus, heating iacilities operate in the range 3 to 12 MHz to
correspond with E- and F-region plasma densities. A typical 'heater' Is capable of delivering about 2 MW of
power into an antenna which forms a beam directed ve~tically into the iorosphere. Provision is made for
radiating either ordinary (0), extraordinary MX) or linear polarization. The antenna gain is usually of the order of
about 20 db, thus an effective radiated power (ERP) of about 200 MW can be produced. The power density

F (pWm 2
) in the beam at a range R Otm) is related to the ERP (MW) by

F 826 xERPRI

and theelectric field ECVm"')

E -
R

Thus, an erp of 200 MW yields power fluxes of 150 pWr"2 and 65 .Wm'2 at E (110krm) and F (250km) layer
heights respectvely.

The interaction of the high power wave with the ionosphere involves a number of complicated proc sses which
can he subdivided into four general classes as indicated in Figure 1. The time scales for these processes differ
appreciablyranging from a few milliseconds to tens of seconds as illustrated schematically in Figure 2 These
various interaction processes are now considered in detail

Coallsoval Ineractions ID-region).

The collsional absorption of heater wave energy in the lower ionosphere (D-region) produces a rapid increase in
electron temperature which causes an increase in electron ctllision frequency and, hence, in the absorption
coefficient (JATP Special Issue, 1982). These changes will influence the propagation of other radio waves passing
through the heated region particularly at frequencies in the HF band and below. The time constants of these
heating processes are very short (- 0.5 msec) and, thus, amplitude modulation of the heater signal can be
transferred to other (low power) radio waves passing through the disturbed region as in the classical
Luxembourg effect already referred lo.
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The electron temperature modulations produced in the D and E regions by amplitude modulating the heating
wave, also produce electron density modulations via the electron temperature dependent recombination rait.
Consequently, the ionospheric conductivities are modulated and in the presence of the electric field, in
alternating current Is generated which radiates at the modulation frequency of the modifying heater (HF) wae
Stubbe et &l 1982). Significant signal levels in the ULF, ELF and VLF ba-ds have been radiated by modulating
th heater in this manner as indicated ir Figure 3. Low frequency radiations have been stimulated from both
auroral and equatorial electrojets and this type of radiation generation could have new applications in long
distance and sub-surface ommunications.

SMli askal pFmon frreedarities.

At WOgh wave powem instabilities can be generated in the ionospheric plasma by means of a variety of
perametric instabilities (Fejer 1979, Robinson 1989). These occur when the frequency of the heating (pump)
electromagnetic wave is dose to the plasma frequency and is polarized in the e.dinary (0) mode. At least one of
the parametrically excited waves is an electron-acoustic wave with frequencies dose to the pump frequency.
Examples of such instabilities, where coupling between the wave modes is due to the Ponderomotive force (Fejer
1979), are the parametric decay instbilty (D) and the oscillating two stream instability (OTSI). The PD! is a
three wave interaction in which the second decay product is a low frequency ion acoustic wave (see Figure 4).
The OSTS1 is a four wave process in which the pump wave decays into an electron acoustic wave and, in
addition, two zer frequency perturbations which constitute a spatially periodic plasma density bIgularty
(Dyth at al 1953, Weatherall et AL, 1982).

The time history of the development of these various instabilities is illustrated schematically in Figure 2.
ltlially ther is a rapid growth of short wavelength electrost•tic nodes driven by the PD! and OT1. These
plasma disturbances can be detected by the initial enane n of the Ion fire spectrum in incoherent radar
backscatter (Djuth et al 1986, Kohl et Q 1983). Two examples of ESCAT observations of these effects are

reproduced in Fgure S

The cu.-'l panel of the figure corresponds to the ion acustc spectrum and contains two enhanced peaks at ± 10
kHz plus new peak at o Doppler shift (zero frequency.) These enhancements amr caracteristic of scatter froM
low frequency eectryntatic modes and all three peaks have amplitudes which are much greater than the normal
tburwl Ion acoustic rFpectrum The two panels to the right and left in the figure represent th, up shifted and
down shifted playa line respectively. Thes lines are %Nf by the plars frequency (approximately 5 MH is
dw case) from the zero Doppler shift position of the 940 N~z raoar frequency. The plasm. fin? also shows
considerable structure. The peak at zero Doppler shift corresponds to an enhanced plasma line .ignature.
However, the interesting featurs is the more intense peaks which am displaced by approximately 10 kHz towards
the central ion lns- These intense peaks have been intepreted Q(ohl et 1, 1963) as decay lines (P1)1.

Th presence of the OTS Is Indicated by the exdstence of the 3 peaks at zfmt Doppler shift and, in the case of the
lower panel in FigureS , this pre.-. dominates. It must be emphasised that the spectral features reprodu- , in
Rpm are highly transient an are usually observed immediately after heater turn on,

The ost ad nonlinear evolution of t hermal Oscillating Two Stream irnsabilty (TOTSD causes the growth
o( mall scale fidd aligned Irregularities. These in turn give rise to anomalous absorption effects which reduce
the pump power and so quench the short wavelength electrostatic modes associated with the PDT and OTSI
watabillitls. This quenchinS effect accounts for the transient nature of the stoectral peaks observed in the
inscoe t isatt spectrum. Many theories have been prorosed to account for the growth of the small scale
brelpdarties and of the anomalous absorption effects which they produce (Graham and Fejer, 1976, Vaskov and

ono 1976, 1965).

Cmoider electromagnetic pump wave of field Eo (o, o) angular fequency a and zwro wave number (Oe. large
wavelength). This scatters from an initially low amplitude small scale plasma irregularity of dansty n (o, W)
with zero frequency and wave vector k (perp to the geonagnetic field). The first order scattered wave is
electrostatic and has an electric field L (to, k). This wave caa scatter from the density Irregularity which

lsaeequenty produces a second order electrostatic way.* with an electric field 14 (a, 2k). Scattering into higher
modes may also occur. Interference between the electric fields of waves with wave numbers differing by k
prduces heatig which enhances "n rregularities n (o, k). The increasing size of n(o k) will lead to a decrease
in 89 due to anomalou absorption and an equilibrium value will be reached where the values of 1O and n(e, W)
stabf,. The spatial and tmporal development of n(o, k. t) can be derived frmt h perturbation electrot and
bt belance equation in which an adiabatic approximation has been •rit Is yields an expression of the

formJ_

S. .. . .. . . .. .. . . .. . . . . ... . . . ... . .. . . .o
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0. +k
2 0 n(o,,k_ t) o zuH)

S-TT,+ T

When O, and D1 are the diffusion coeffidents paral&e and perFendicular to the magnetic field, T, and Tj are the
electric and ion temperatures respectively. The r4ght hand side term of the equation represents difference
heating due to the pump and scattered waves at the upper hybrid resonance level ZUH. The co-ordinate z is
measured in the directlon of the geomagnetic field. Q (o k t) is the heating rate which can be written In a
simplified form as

!Loo+ n- a k • -) )exp-MWF1 nl(O'k, 0. 13 )

whese Pit L the pump power as•a function of time L P, is the pump threshold power for fi. t order scattering

alone. P2 is the threshold for second order effects only and r is the coefficient of anomalous absorption which

can be written as (mnes et al M9O4).

r•t) - bn2 (o, k,-0

Examples of anomalous absorplion of three HF diagnostic waves of different frequencies propagating through
the heated volume are reproduced In Figure 6. The grmatest anomalous absorption is observed on the frequency
closest to the heater (pump) frequency. Note the marked change in fading rate produced during heating which is
the subject of another presentation at this conference.

Anomalous absorption effects can also be detected on the reflected neater signal itself (see Figure 7.) As the
heater power increases, so, initially, does the reflected signal power. At about 1/4 fuil power, the received signal
amplitude remains constant, even tho.gh the transmitted power is increa-,ed. A further increase in transmitted
power, beyond about 1/2 full power, leads to a decrease in the reflected signal strength. As the power is decreased
from full power, no change Ln the reflected signal strength occurs until the transmitted power is reduced to about
1/4 full power. This is the threshold for sustaining the irregularities and, since the transmitted power is less
than this value, the irregularity generation process ceases. There is a rapid but linear decline in received signal
strength as the trznsmitted power is further decre;,sed to zero. This so-called Hysteresis effect can thus be
explained in terms of the TOSTI as outline by the theory presented above (Stubbe et al, 1982).

Large-scale Irefglatities

The input of energy to the ionosphere via the anomalous absorption proctss quickly leads to a major increase in
electron temperature. These temperature enhancements have been measured by incoherent scatter radar during
hbating at Tmmso and at Arecibo (Mantas et al 1981, Jones et al, 1936). Tyf.ical results for Tromse are reproduced
in Figure 8. The figure indicates that the largest enhancement occurs at heights closest to the pump reflection
height and that enhancements in Teof 500"I( (corresponding to an increase of 40% over the amb.ent value) are
quite common. The temperature increase saturates in about I min after heater turn on. The T. enhancement
decays less slowly with height above the pump interaction level and more rapidly below this level. This
response can be explained !,t terms of thermal diffusion along the field line and the more rapid cooling which
occur. in the lower ionosphere due to the increased collision frequency (Gurevich 1978, Shoucri et al 1984).

Changes are als oberved in the electron density but these are much smaller than the temperature changes,
amounting to about only 10 - 20% of the ambient value, (Figure 9). The maximum enhanrement occurs at the
level of the maximum enhancement in Te and dies away rapidly above and below this level. There are major

differences in the electron density and temperature responses. The values of ANe/Ne at I min After heater turn
on are lower than those 3 mmn after heater turn on in the height range 150 to 225 kin. This indicates that the
time cotanats for Ne changes are greater than those for T. changes. There is also evidence for a depletion in N,

near the altitude of the peak in ATe/Te. This depletion, in electron density is consistent with the generation of a
thermal caviton by the Troiso heater. However, the limited height resolution of the incoherent scatter radar
(4kn for Ne) makes this conclusion difficult to verify experimentally.
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The large scale changes in the ionospheric el-aro density Induced by heating will change the refractive index of
the ionosphere and, hence, effvct the propagation characterlstics of tad jowaves traversing the m-gilo. it has been
established that it is possible to create focaming for defocussing lenses in the ionosphere depending on what
height the maximum interaction of the pump wave with the plasma occurs (Bernhardt and Duncan, 1982.)

sdmlatled mendlem

Mhen the spectrum of the heater wave reflected from the Ionosphere is measured, it Is found to contain
additional frequency components which are generated during the heating proces CThidt et al 1982, Stubbe et &I
1964). Thie spectrum of these stimulated emissions exhibits considerable structure but is limited to about t
100kHz of the primary wave frequency. An example of such a spectrum is reproduced in Figure 10. The most
prominent peak is that down shifted from the parent line by about 10kHz. However, other peaks are present
both up and down shifted in frequency. These new emissions have been explain ed as follows. Initially, the
electromagnetic pump wav re ates lare amplitude electrostatic waves through the Pt)! process. Further, wave-
wave interactions can then occur which involves these daughter components. These interactions give rise to
new electromagnetic waves which differ in frequency from the original pump frequency. Individual peaks in
the spectrum correspond to specific scatter processes.

SUMMar

Heating of the ionosphere by a high power radio wave can generate a wealth of plasma prccss~es a few of which
have been reviewed in this paper. Recent advances in theoretical understanding and in experimental
technique have lead to important new discoveries, for example, the thermal caviton. 11 seems that, with the
development ofmore powerful heating facilities, even more interesting and, as yet unexy.-fted, phenomena will
be discovered.
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~. DISCUSSION

How do you prevent crosstalk between transmitter and receiver when performinar
reflection *xperibants at the heater frequency?

AUTHOR'S RUPLY

At Tromso the heater is located in a steep valley, thus the direct ground vave at the
site some 50 km bouth of the heater is greatly attenuated. Our measurements indicate
that the ground rave is very small compared to the sky wave signal.

I p
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HIGH POWER HT MODIFICATION: GEOPHYSICS
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As the electric field and power density or radio frequency (RF) radiation increases
eontinuously In a plasma, the response of the plasma to the Incident energy changes
discontinuously. This follows from a- complex of competing physical processes. each
generally with its own power dependent threshold, and plasma instabilities each with its
own grovth and decay rate. Non-linear power dependencies, boundary condition dependencies
on past histories of the plasma conditions, Cependence on proximity to plasma resonences.
and non linear mixing In the plasma to up or down convert with respect to resonances, all
conspire to make experimental guidance invaluable to theoretical development. Experiment
has demonstrated that wit. increasing HF power one passes threshold of detectability
sequentially from: passive transmisson. to cross-modulation, to thermal bulk heating.
to parametric and other instabilities with plasma structuring and stimulatedelectromagnetic radiation, to electron acceleration nnd airglow, to reported stimulated

Ionization. Theoretical understanding of these effects follows from merger ot radio
physics, ionospheric physics and aeronomy, plasma physics, and atomic and molecular
physics. The RF propagation and emission environment is affected through the VLP to G~z
range by lensing. scattering, !odulation, and stimulated emission. The optical background
and emission character Is affected over a very wide spectrum by electron impact and
temperature enhancement altering translational, rotational and vibrational temperatures
(as rell as raising fine structure population distribution questions). An adequate
understanding of the processes, if not a predictive capability of the consequences oa
sending very high power density RF into the Ionosphere. represents common ground for many
scientific discipline. agency.national. civilian, and defense goals and missions. This
presentation addresses a set of geophysical effects over this range, and invites audience
participation in anticipation of what effects lie bey.vnd the next threshold (of
ionospheric response to higher power HF illumination). The exciting upgrade of the Heater
at •romso and emerging new HF modifier plans ir. the U.S. are partial motivation for such
eonjecture.

1. INTRODUCTION

As we contemplate the next generation of very high power HF Ionospheric modification
experiments (C watt class ERP heating ayperiments) it is appropriate to review where we've
been and reflect on where we're headtd. he energy deposited in the ionosphere has
perturbed the plasma temperature. oompir.tion. and concentration, has generated optical
and rt emissions, has modified the rf propagation character, has diagnosed a number of
aeronamic and plasma physics processes, and has triggered a host of instability processes.
Figure 1 Identifies many of the effects we will now discuss in further detail.

2. THERMAL RLECI'rON POPULATION

2.1 Steady State Temperature Enhancements

The bulk electron gas temperature is enhancd by many tens Of percent. or many
hundreds of degrees X In the lower F region.

In fact, the thermal electron population can be heated at all altitudes in the
Ionosphere. The dominant immediate beating mechanism is deviative absorption. This will
be, strong wherever HP retardaticn is large (where an lonosonde virtual height Is very
different from the true height). Each electron alternately accepts and returns energy
from and to the passing rf electric field of the HF wave. If the electron suffers a
collision with a neutral particle, this ordered motion becomes disordered, i.e. beat.
the beating being said due to deviative absorption.

Locally deposited heat is very quickly distributed by strong thermal conduction
along magnetic field lines. Thit 's very effective at communicating locally depoolted
heat to distant regions, a hundred ka or more away for F regicn heating, where cooling
may be mor,. effective. Thus steady state electron gas temperature enhancements in the
F region r.-y balance local heating against cooling over hundreds of km. In figure 2.
the dashed and solid line altitude profiles of electron temperature Te and electron gas
heating Qe show very little difference In To for the same total Qe spread over about a
10 ka or a 50 km al.ltude region. This is because of the dominance of heat co-duction
in distributing the beat in altitude.

2.2 Response Time

The bulk thermal plasma temperature responds with a typical tire constant of a
fraction of *minute. This Is illustrated In figure 3. Ordero a minute is a
characteristic time for hulk plasma effects to set in, e.g. new electron and ion gas



temperatures. new plesma scale height. redistribution of now plasma pred sures. plaediffusion rates. and notion towards a now equplibrirm profile, and n pw teaersatur

dependent reaction rates and ohenic&l o-osition.

The observed time constants for electron gas ooling aLree with available theory
within the observational error bars. It is Important to note that this statistical error
bar Is set not by th3 measurement diagnostic (e.g. order 10K for several minutes
integration at the Arecibo ISR), but bY the fluctuation between the temperature in one
parcel of plasma relative to the temperature in an adjacent parcel of plasma, as special
temperature fluctuations in the heated plasma drift through the diagnostic ISR field of
vIew (here one-sixth of a degree angular field of view, or roughly a km diameter).

"ah electron gas cools locally by collisione with tons in the P region, and by
thermal conduction downward in altitude to where *lectrons collide with neutral particles
below. (The heated ions in the P region pass their heat on to neutral particles locally.)
The dominant F region electron gas cooling rate, collisions with ions, is proportional
to the numbv- of electrons times the number of Ions with which they collide. Thus. the
electron gas 20oling rate is proportional to the square of the electron density. neW. aid
thus the fourth power of the plazns frequency. For typical hasting matched to near the
lonospberlc critical frequency fcF2. on* must then expect dra-atioally greater heating
aeeponme et the low end of the heating range in view of an fo?24 dependence of cooling
r~ateo.

3. SUPRATMEWA~L C.ECY•ON POPULATION

*I1 Supratber"tl Electron flu, Energy and Special Distribution

a he high energy tall of the electron gas population Is als enhanced. This has been

mst readily Inferred from airglow enhancement* synchronized with H? transmitter on-off
cycles. In figure 4. the separation between the envelope of the alternately higher and
lower 6300A intensities. r•ughly 20 Rayleighe, is due to electron Impact excitation ofsteele oxygen by electrons of greater than 1.96aV. From this Wtsurement alone we haveno 1nformation on the ene•gy distribution of the electron flux abcve 2eV. and only a crude

M"=e or the total particle or energy flux (because of competing collision
aroes-sfttons for electron impact as well an subsequent O('D) quenching by molecular
aItrogen). The flux is of the same order as that which reaches a locally dark ionosphere
trust a sunlit conjugate mdlatitude ionosphere.

honcements of other optical emissions, whose excitation crose sections have higher
energy thresholds, are also seen. These in principle provide a crude electron energy
spectrometer, and a more unambiguous lower bound on the energy abeve which electrons are
accelerated by hM excited processes. 6300A emissions can be enhanced by Naxwelllan
electrons above 2eV for electron temperatures exceeding rough~y 2800oK. or by non

taxwellian electrons above 2eV. 5577A emissions, with a Way threo.ild. and other higher
energy threshold emissions. cannot be thermally excited.

The moat direct published measurement of the energy spectrum ias been by the plasm
line Component of the incoherent scatter radar technique. This has established that the
epetrum of supratharmal electrons reaches beyond 17eV before significantly falling off

(Carlson et al, 1982). There is not yet at this time an accepted theory to explain this
high energy reach.

The spacial distribution of the airglow enhanoements Is roughly the slse and shape
of the OF hael power beam width, and roughly collocated with it. as seen in figure 5
(Beonmardt et al. 1988). Ionospheric tilts. self-made indentations and drifts, traveline
Ionospheric disturbances, nd a gravity waves will displace the location of maximum airglow
enhancement.

3.2 Response Tim

The 6300A enhancement response time. roughly a large fraction of a minute in figur-
4. is determined by the response time of the 6300 emission process, not the time for the
ampra thermal electron flux to turn on. 5577A emissions show response times of a large
fractlon of a second, also determined by the response time of the optical emission

procwss, not the electron flux turn on. The suprathermal electron flux turns on over
plasma instability time scales (measured In me, not a).

I. PARAXTRIC INSTABILITItS

1.1 Spectral Identification

Among the plasma InstabilIties excited in the ionosphere by the HM transmitter are
Several at and near the height of OF reflection, identifiable in figure 6 by their
spectral signature on the incoherent scatter radar plasma lirfb echo.

The spectral peak at the MY frequency displacement is due to thu two stream
instability. The strongest spectral peak in this case, at the ion acoustic wave doppler
displacement ewi, is due to the decay mode Instability. Plasma waves in this ase are
enhanced about 1011 shore their thermal amplitude. The line at -wi is the decay made


